Tuesday, April 24, 2007

Gliese 581 exo planet - WAUV - a major step towards a new Earth

In a find­ing that if con­firmed could stand as a land­mark in history, as­tro­no­mers have re­ported dis­co­v­er­ing the most Earth-like plan­et out­side our So­lar Sys­tem to date: a world that may have liq­uid oceans and thus life......

Located only 20.5 light-years away - Gliese 581 is among the 100 closest stars. So close, that we could consider sending a mission towards Gliese within this century!

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Lets recapitulate what this blog is all about: A wager on when we will find the first true exo Earth.

We had talked about this for years before 2002 - but 5 years ago we formalized the bet to: When will we find Earth 2? And this blog was initialized - I.e.:

[The planet we are talking about must not only look like Earth in size and color - we think it must have an atmosphere,
perhaps even a diverse landscape where life can find many different
niche's. In some distant future it should be possible for
humans to settle the place. It short, it should be VERY Earthlike.
Obviously, all other kinds of planets will also be extremely
interesting, but here we are talking about Earth II. ]

It was further understood that the Exo Earth should be within the habitable zone of its star. Gravity should be Earth like - We didn't have to many details on what the atmosphere should be like - but the planet should have an atmosphere - and it should potentially be possible to terraform that atmosphere in order for people to be able to settle the planet. The planet should also have a "home" feeling - i.e. look like Earth- where it almost follows from this that there should be liquid water on the planet (but again, we left if for the the future to settle the exact details).

And we had:
Jan Holst Jensen: - The Kepler Mission will find such a planet more or less immediately after launch. That is in 2007 - 2008.

Simon Laub: Was a little bit more cautious, ..So he is betting on 2012.

The interesting date is the confirmation date. But we are ok with a little wiggle-room for a debate on whether we should instead be talking discovery date. Discovery date is allowed - if the discovery
has all the hallmarks of a confirmation as well.

-----------------

Fast forward to April 24th 2007...

Gliese's planet is in the habitable zone of the Star!
The red dwarf Gliese 581, is smaller and colder than the Sun – and thus less luminous – the planet lies in the habitable zone, the region around a star where water could be liquid!

Glies's planets gravity would be twice that of Earth.
Which then makes it open to interpretation, whether that is something humans could settle. But for now it seems ok.

Moreover, the planet around Gliese's radius is estimated to only 1.5 times the Earth’s radius, and models predict that the planet should be either rocky – like our Earth – or covered with oceans,” he said.

Obviously, we need confirmation on all of this. But so far this is very promising.

With water and an atmosphere on Gliesse's Earth like planet - a nice blue feel to it - Jan is the winner of our wager.
Long before the Kepler mission even made it to liftoff...

But we need more details. The wager is not settled yet!

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX



The Gliese story so far - April 24th 2007:

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

In a find­ing that if con­firmed could stand as a land­mark in history, as­tro­no­mers have re­ported dis­co­v­er­ing the most Earth-like plan­et out­side our So­lar Sys­tem to date: a world that may have liq­uid oceans and thus life.

Swiss, French and Por­tu­guese sci­en­tists found the body, es­ti­mated as 50 per­cent wid­er than our Earth, or­bit­ing a so-called red dwarf star rel­a­tively close to Earth. The star is thought to har­bor two oth­er plan­ets al­so.


The new­found exo­pla­n­et—as as­tro­no­mers call plan­ets around stars oth­er than the Sun—would be the small­est such body ev­er re­ported.

None­the­less, the object is es­ti­mat­ed to weigh as much as five Earths, part­ly thanks to its great­er width. For the same rea­son, it would have more than twice Earth’s sur­face ar­ea. His­tor­i­cally, only large exo­pla­n­ets lend them­selves to hu­man de­tect­ion, though that is chang­ing.

Oth­er cu­ri­ous fea­tures of the new­found plan­et are that grav­i­ty at its sur­face would be around twice as strong as on Earth; and its year is just 13 Earth days long, as it comp­letes one or­bit about its sun in that time.

It’s 14 times clos­er to its star than we are from our Sun, re­search­ers said. But since its host star, the red dwarf Gliese 581, is smaller and cool­er than the Sun, the plan­et nev­ertheless would lie in its hab­it­a­ble zone—the re­gion around a star with suit­a­ble tem­pe­r­a­tures for liq­uid wa­ter.

Av­er­age tem­pe­r­a­tures on this “supe­r-Earth” lie be­tween 0 and 40 de­grees Cel­si­us (32 to 104 de­grees Fahren­heit), “and wa­ter would thus be liq­uid,” said Sté­phane Udry of Switz­er­land’s Ge­ne­va Ob­serv­a­to­ry, lead au­thor of a pa­pe­r re­port­ing the re­sult. “Mod­els pre­dict that the plan­et should be ei­ther rock­y—like our Earth—or cov­ered with oceans,” he added.

Liq­uid wa­ter is crit­i­cal to life as we know it,” not­ed Xa­vi­er Delfosse, a mem­ber of the team from Gre­no­ble Uni­ver­si­ty, France.

“Be­cause of its tem­pe­r­a­ture and rel­a­tive prox­im­i­ty, this plan­et will most prob­a­bly be a very im­por­tant tar­get of the fu­ture space mis­sions ded­i­cat­ed to the search for extra-terrestrial life. On the treas­ure map of the Uni­verse, one would be tempted to mark this plan­et with an X.”

The host star, Gliese 581, is among the 100 clos­est stars to us, ly­ing 20.5 light-years away in the con­stel­la­tion Li­bra (“the Scales.”) A light-year is the dis­tance light trav­els in a year.

Gliese 581 has one third the mass of our Sun. Such small stars, called red dwarfs, are at least 50 times faint­er than the Sun and are be­lieved to be the most com­mon stars in our gal­axy. Among the 100 clos­est stars to the Sun, 80 be­long to this class.

“Red dwarfs are ide­al tar­gets for the search for such plan­ets be­cause they emit less light, and the hab­it­a­ble zone is thus much clos­er to them than it is around the Sun,” said Xa­vi­er Bon­fils, a co-re­searcher from Lis­bon Uni­ver­si­ty. Plan­ets near a star are eas­i­er to de­tect be­cause their grav­i­ta­tion­al pull af­fects the par­ent star no­tice­ably, in­duc­ing some­thing of a wig­gling mo­tion.

Red dwarfs are al­so ex­pected to live ex­traor­di­nar­ily long be­cause they burn fu­el slow­ly. A red dwarf one-third the Sun’s mass, like Gliese 581, would typ­i­cal­ly shine for some 130 bil­lion years, out­liv­ing the Sun by thir­teen times. That might re­lieve at least one source of stress for any in­hab­i­tants of a red dwarf sys­tem. We on Earth are al­ready half­way through the Sun’s life­time, though much time re­mains.

Two years ago, Udry and his team found anoth­er plan­et around Gliese 581, es­ti­mat­ed to weigh as much as 15 Earths—about as much as Nep­tune—and or­bit­ing the star in 5.4 days.

At the time, the as­tro­no­mers had al­ready not­ed hints of anoth­er plan­et, Udry and col­leagues said. They thus took new mea­sure­ments and found the new “supe­r-Earth,” as well as a like­ly third plan­et weigh­ing eight Earths and or­bit­ing in 84 days. The find­ings have been sub­mit­ted to the re­search jour­nal As­tron­o­my and As­t­ro­phys­ics, the sci­en­tists said.

The find was pos­si­ble thanks to an in­stru­ment known as a spec­tro­graph on the Eu­ro­pe­an South­ern Ob­serv­a­to­ry’s 3.6-meter tel­e­scope at La Silla, Chil­e, ac­cord­ing to the group. The in­s­tru­ment, called the High Ac­cu­ra­cy Ra­di­al Ve­loc­i­ty for Plan­e­tary Search­er, is touted as one of the most suc­cess­ful tools for de­tecting exo­pla­n­ets to date.

The in­stru­ment meas­ured wig­gles in the star’s mo­tion cor­re­spond­ing to ve­loc­i­ty changes of just two to three me­ters per sec­ond—the speed of a brisk walk, ac­cord­ing to the Ge­ne­va Ob­serv­a­to­ry’s Mi­chel May­or, prin­ci­pal in­ves­ti­ga­tor for the in­stru­ment. Giv­en the re­sults so far, “Earth-mass plan­ets around red dwarfs are with­in reach” of dis­cov­ery, he pre­dicted.


--------------------

An international team of astronomers from Switzerland, France and Portugal have discovered the most Earth-like planet outside our Solar System to date.

The planet has a radius only 50 percent larger than Earth and is very likely to contain liquid water on its surface.

The research team used the European Southern Observatory’s (ESO’s) 3.6-m telescope to discover the super-Earth, which has a mass about five times that of the Earth and orbits a red dwarf already known to harbour a Neptune-mass planet.

Astronomers believe there is a strong possibility in the presence of a third planet with a mass about eight times that of the Earth in the system.

However, unlike our Earth, this planet takes only 13 days to complete one orbit round its star. It is also 14 times closer to its star than the Earth is from the Sun.

However, since its host star, the red dwarf Gliese 581, is smaller and colder than the Sun – and thus less luminous – the planet lies in the habitable zone, the region around a star where water could be liquid!

“We have estimated that the mean temperature of this super-Earth lies between 0 and 40 degrees Celsius, and water would thus be liquid,” said Stéphane Udry from the Geneva Observatory, Switzerland and lead-author of the paper in the journal Astronomy and Astrophysics.

“Moreover, its radius should be only 1.5 times the Earth’s radius, and models predict that the planet should be either rocky – like our Earth – or covered with oceans,” he said.

“Liquid water is critical to life as we know it and because of its temperature and relative proximity, this planet will most probably be a very important target of the future space missions dedicated to the search for extra-terrestrial life. On the treasure map of the Universe, one would be tempted to mark this planet with an X,” added Xavier Delfosse, a member of the team from Grenoble University, France.

According to the research team, the host star, Gliese 581, is among the 100 closest stars to us, located only 20.5 light-years away in the constellation Libra (“the Scales”).

The star has a mass only one third that of the Sun. Such red dwarfs are at least 50 times intrinsically fainter than the Sun and are the most common stars in our Galaxy. Among the 100 closest stars to the Sun, 80 belong to this class.

“Red dwarfs are ideal targets for the search for such planets because they emit less light, and the habitable zone is thus much closer to them than it is around the Sun. Any planets that lie in this zone are more easily detected with the radial-velocity method, the most successful in detecting exoplanets,” said Xavier Bonfils, a co-worker from Lisbon University.

Labels: , ,

0 Comments:

Post a Comment

<< Home